
182 SIMULTANEOUS INTERPRETATION OF CHARGE AND SPIN DENSITY DATA 

CLEMENTI, E. & ROETTI, C. (1974). At. Data Nucl. Data Tables, 
14, 177-478. 

COPPENS, P., CSONKA, L. N. & WILLOUGHBY, T. V. (1971). Acta 
Cryst. A27, 248-250. 

COPPENS, P., GURU ROW, T. N., LEUNG, P. C. W., STEVENS, 
E. D., BECKER, P. & YANG, Y. W. (1979). Acta Cryst. A35, 
63-72. 

COPPENS, P., HOLLADAY, A. & STEVENS, E. O. (1982). J. Am. 
Chem. Soc. 104, 3546-3547. 

FIGGIS, B. N., MASON, R., SMITH, A. R. P., VARGHESE, J. N. & 
WILLIAMS, G. A. (1983). J. Chem. Soc. Dalton Trans. 4, 703-712. 

FIGGIS, B. N., REYNOLDS, P. A. & MASON, R. (1983). J. Am. 
Chem. Soc. 105, 440-443. 

FIGGIS, B. N., WILLIAMS, G. A., FORSYTH, J. B. & MASON, R. 
(1981). J. Chem. Soc. Dalton Trans. pp. 1837-1845. 

FREEMAN, A. J. & FRANKEL, R. B. (1967). In Hyperfine Interac- 
tions. New York: Academic Press. 

GILLON, B. (1983). Thesis, Univ. of Paris. 
G1LLON, B., BECKER, P. & ELLINGER, Y. (1983). Mol. Phys. 48, 

763-774. 

HANSEN, N. K. & COPPENS, P. (1978). Acta Cryst. A34, 909-921. 
HOLLADAY, A., LEUNG, P. C. W. & COPPENS, P. (1983). Acta 

Cryst. A39, 377-387. 
HUBBARD, J., RIMMER, D. E. & HOPGOOD, F. R. A. (1966). Proc. 

Phys. Soc. London, 28, 13-36. 
LIN, W. C. (1979). In The Porphyrins, edited by D. DOLPHIN, Vol. 

IV pp. 255-377. New York: Academic Press. 
MASON, R. (1t)82). In Electron Distributions and the Chemical 

Bond, edited by P. COPPENS & M. B. HALL, pp. 351. New York: 
Plenum Press. 

RAKHECHA, V. C. & SATYA MURTHY, N. S. (1978). J. Phys. 
Chem. 11, 4389-4404. 

STEWART, R. F. (1969). J. Chem. Phys. 50, 2485-2495. 
STEWART, R. F. (1970). J. Chem. Phys. 52, 431-438. 
STEWART, R. F. (1976). Acta Cryst. A32, 565-574. 
SUGANO, S., TANAKA, K. & KAMIMURA, H. (1970). Multiplets 

of Transition Metal Ions in Crystals. New York: Academic Press. 
TOFIELD, B. C. (1975). Struct. Bonding (Berlin), 21, 2-87. 
WATSON, R. E. & FREEMAN, A. J. (1960). Phys. Rev. 120, 1125- 

1134, l134-1141. 

Acta Cryst. (1985). A41, 182-189 

Many Algebraic Formulas for the Evaluation of Triplet Phase lnvariants from 
Isomorphous Replacement and Anomalous Dispersion Data 

BY JEROME KARLE 

Laboratory for the Structure of Matter, Naval Research Laboratory, Washington, DC 20375, USA 

(Received 5 July 1984; accepted 18 October 1984) 

Abstract 
An algebraic analysis is presented for the calculation 
of triplet phase invariants from isomorphous replace- 
ment and anomalous dispersion data. The analysis 
applies when there is one type or one predominant 
type of anomalously scattering atoms. The use of the 
formulas largely parallels a recent approach that is 
based on a General Rule for evaluating triplet phase 
invariants. It involves the mixing of terms from 
isomorphous replacement with various types of terms 
arising in anomalous dispersion or the mixing of 
various terms arising in anomalous dispersion alone. 
The mixing of terms gives rise to a myriad of formulas 
that can generate values anywhere in the range from 
-Tr to 7r. In the tests performed, it was found that 
the algebraic formulas offered an improvement in 
accuracy over that obtained from the General Rule. 
The accuracy is potentially high but depends ulti- 
mately on the reliability of the experimental data. 

Introduction 
Several analyses based on the mathematical and 
physical properties of diffraction data from isomor- 
phous replacement and anomalous dispersion experi- 
ments have led to a large number of formulas for 

0108-7673/85/020182-08501.50 

evaluating triplet phase invariants. The formulas are 
generated by several rules (Karle, 1983, 1984b, c), 
which have been generalized and extended by the 
development of a General Rule (Karle, 1984d). In 
the application of the General Rule, it is possible to 
combine various sets of isomorphous replacement 
data or isomorphous replacement data with 
anomalous dispersion data or various sets of 
anomalous dispersion data in many different ways. 
The variety of combinations increases considerably 
when anomalous dispersion data are collected at more 
than one wavelength. 

A number of tests of the General Rule were per- 
formed on exact data computed from the coordinates 
for cytochrome c550.PtC124 - from Paracoccus 
denitrificans (Timkovich & Dickerson, 1976). Values 
for a variety of different types of triplet phase 
invariants were computed from combinations of 
isomorphous replacement and anomalous dispersion 
data at 2.5 A resolution by use of the General Rule. 
The average magnitude of error for thousands of 
invariants ranged from 30 to 45 °. These are significant 
errors to combine with the experimental error of an 
actual application and it would evidently be much 
more desirable if the error inherent in the theory 
could be reduced. 

O 1985 International Union of Crystallography 
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It is the objective of this investigation to present 
an algebraic analysis of the structure factor equations 
appropriate tO the isomorphous replacement and 
anomalous dispersion techniques, which leads to for- 
mulas for evaluating triplet phase invariants that are 
more accurate than those associated with the General 
Rule (Karle, 1984d). Formulas are obtained that 
express the tangents of the triplet phase invariants in 
terms of the measured intensity data. In forming the 
tangent formulas, quantities that depend upon know- 
ledge of the heavy-atom structure are cancelled out, 
so that it is not necessary to know this structure. In 
addition, one type of formula gives the values of the 
structure factor magnitudes for the heavy-atom struc- 
ture in terms of the measured intensities. 

The algebraic analysis is carried out in general 
terms, thus permitting the end result to represent a 
large number of formulas composed from almost the 
same large variety of terms to which the General Rule 
applies. The very large number of formulas that obtain 
permit a very large number of triplet phase invariants 
to be evaluated. 

The algebraic analysis to be presented here is 
closely related to an exact algebraic analysis that has 
already been published (Karle, 1980). The latter can 
take into account any number or types of anomalous 
scatterers and can use data from isomorphous 
replacement experiments coupled with data from 
single- or multiple-wavelength anomalous dispersion 
experiments or from anomalous dispersion experi- 
ments alone. This exact algebraic theory has been 
extended to include the evaluation of triplet phase 
invariants (Karle, 1984e) with the only source of 
error, besides the experimental error, the uncertainty 
concerning th6 deviation from zero of the values for 
triplet phase invariants associated with the heavy- 
atom structures. Owing to the simplicity that is 
ordinarily found for the heavy-atom structures that 
derive from heavy-atom substitution in macro- 
molecules, it is generally easy to satisfy the condition 
that the triplet phase invariants have a value close to 
zero for large numbers of invariants. 

The question arises concerning the relationship 
between the theory to be presented here and the latter 
analysis and the roles that both theories might ulti- 
mately play. The variables appearing in the present 
theory are somewhat different than those employed 
in the exact algebraic theory, although they are closely 
related. The myriad of formulas that occur in the 
present treatment appear to afford additional options 
for handling the data to those obtained from the exact 
algebraic treatment. When dealing with experimental 
data, the additional options may be useful. 

Considerations of optimal usage of experimental 
information extends beyond the two theories and 
should encompass the well-established procedures 
for handling isomorphous replacement and 
anomalous dispersion data and the newer possi- 

bilities from probability theory (Hauptman, 1982; 
Pontenagel, Krabbendam, Peerdeman & Kroon, 
1983; Giacovazzo, 1983). It would appear that many 
future studies will be required to effect suitable evalu- 
ations. 

The formulas to be presented here are most accur- 
ate when there is a single type of anomalous scatterer 
but are still rather accurate when there is one pre- 
dominant type of anomalous scatterer. Inspection of 
the nature of the real and imaginary corrections to 
the atomic scattering factors shows that these circum- 
stances can prevail in a broad range of applications. 

Theory 

The theoretical development begins with the relation 

m~l,h ~- m~2,h "q- m~3,h, (1) 

where the symbolism associated with the letter 
represents the eight cases listed in Table 1. For each 
individual case, m, it is easily shown from the defini- 
tions of the structure factors that the listed quantities 
obey (1). The first case, labeled with i, represents 
isomorphous replacement, the next three (1-3) rep- 
resent single-wavelength anomalous dispersion and 
the last four (4-7) represent multiwavelength 
anomalous dispersion. Contained within this symbol- 
ism is a large number of additional possibilities that 
would arise if there were data from several different 
isomorphous replacement experiments and from 
anomalous dispersion experiments performed at a 
number of wavelengths. The case of rn = i, for 
example, could be extended to il, i 2 ,  • • • if there were 
several isomorphous derivatives. Evidently the other 
cases are a function of wavelength. 

The quantity Fhpt-i is the structure factor associated 
with the substituted substance, for example, a 
macromolecule with heavy-atom substituents, Fhp is 
the corresponding structure factor for the unsub- 
stituted substance and FhH is the corresponding struc- 
ture factor for the substituents. The quantity F,~, is 
the structure factor associated with a measured 
intensity at wavelength Ap and includes the contribu- 
tion from anomalous dispersion, F~, is the corre- 
sponding structure factor when the contribution from 
anomalous dispersion is omitted and F~ph is the corre- 
sponding structure factor that represents only the 
contribution from anomalous dispersion at 
wavelength Ap. The quantities are related by 

FhpH = Fhp + Fhu (2) 
and 

F,~, = F~, + F~,h. (3) 

It follows from (2) and (3) that for all the cases in 
Table 1 (1) is" satisfied. The atomic scattering factor 
for the j th atom that scatters anomalously is given by 

fj, h= f~h + f~ + if~ ', (4) 
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Table 1. Quantities involved in the evaluation of triplet phase invariants 

The symbols , , ~ . h ,  , ~ . h  and ,,ff3.h are defined by the corresponding entries in columns 2, 3, 4, respectively, for m = i, 1 , 2 , . . . ,  7. 
The symbol ~ refers to i somorphous  replacement  whereas  the numerical  values for m refer to different cases for anomalous  dispersion. 
The various symbolic entries are defined in the text. Case i may refer to a number  of  i somorphous derivatives, i], i2 , . . ,  and cases 
m = 1-7 may refer to data collected at a variety of  wavelengths. The asterisk implies the complex conjugate. 

Case 
m ~: t  ,h  m " ~ 2  .h  m ' ~ ; 3 , h  8 m A )  f,.*j 
i Fhp H Fhp Fnn 0 f~,h 

1 F~,~ F*: ~° - ~°*- 

7I"/2 if f ~ l  + 

2 F ~  + F*fi 2F C F~, h + F~*fi { 0 if f~pj + f~,j 
c 

~" if f~.~- 

3 Fx~ F C F~, h 8~d f~%, 

4 Fx,h fx2h F ~ h -  F~2h 8 x'~x'2~ f~a ~-,~ 
5 f A l h - [ -  FA2 h 2F~ r:a + ~a 8 . . . . .  --Xlh --Azh AIA21 f ~  I;~2.t 

6 Fx~s Fx,2fi ~.a _ tra*_ 8%- a+.- a A i h  ,t A2h AIA2j f a l A 2 j  

7 Fx,h+ Fx*2fi 2FC Fx,h+ Fx*fi -'+ -'+ 

where f~,h is the normal atomic scattering factor and 
f~ and fj' are the real and imaginary parts of the 
anomalous correction, respectively. 
, The general definition for ~3,h,  based on the 
results of previous mathematical analyses (Karle, 
1983, 1984b, c), is 

q+l 

m°~3,h -- X OrmXj/f~,h) exp(iSmxj)F~,h, (5 )  
j=2 

where fm~ and 8,.a~ are given in Table 1 for the various 
cases, f~h is the normal atomic scattering factor for 
the j th  type of anomalous scatterer in a substance 
containing q types of anomalous scatterers (the sub- 
script 1 is reserved for atoms that essentially do not 
scatter anomalously) and the F~,h are the normal 
structure factors for each type of anomalously scatter- 
ing atom. Additional definitions required for the use 
of Table 1 are 

a u2 1/2 fa d = (f'a2j +fa d) (6) 

8~d = tan- '  (f'~d/f'A~j) (7) 

f~?;-~=[(f,~,_f,~j)z+(f,  _ f ,  )2]t/z (8) 

8 ~ ; ~  = tan-~ [ ( f '~o-f ]~J) / ( f 'xo- f '~) ]  (9) 

fa+,+ = f ie;  +¢" ~2 

+ , +  I I  "JI-- I ? 8 a , ~  = tan- '  [(fa,~ f '~) / ( f~ ,~  + f ' ~ ) ]  (11) 
a + , - -  It # 2 fa,a=i=[(fa,j+fa=.i) + (f~,; -j~a~;)2] '/2 (12) 

(13) 

(14) 

(15) 

+ , -  

6x~A2j 
a --,-4'- 
A I A 2 j  

(~AIA2j 

F r o m  ( 

I m~l ,h[  2 = 

= tan-I  [(f~(o +fLj)l (f~,~f~,j)] 

= [( / : , j  - f L j ) :  + (f'~, j + A J ]  '/: 

= tan -I [(f~(,j-f'~j)l  (f'~,j +f'a~s)]. 

1), it follows that 

+21 ~ & , l  I~&.hl COS (~=.h-- m~'3,), (16) 

Table 2. Expressions for ,.ff3,h and I m~3,h] when there 
is only one type of anomalous scatterer 

The entries maintain approximate  validity when there is one 
predominant  type of  anomalous  scatterer. 

Case, 
m mff3.h I m~3.hl 
i F~.h IF~.hl 

1 2 i(f~ 2/f~.h) F~,h 2(f'~ df~.h)l F~'.hl 

2 2(f'~2/f~.h)F~.h 2(f'~df~.n)lF~.hl 

3 (f~ 2/f~.h) exp ( i8~ 2) F~.h (f~ 2/f~'.h)l F2.hl 

+ , +  n 5 (f~x,x22/f~ h) exp . . . .  . . . . .  F" . (f~,dB/f2.h)l 2 hi (18A~A,2)F2.h 
+ -  n • + , -  n + . -  n n 

6 (f~Ali22/f2.h) exp (18~,x22)F2. h (fiLA22/f2.h)lF2.hl 
- , +  n • - .+ n 

7 (f~x,a22/f2.h) exp (,8 . . . .  2)F2. h (f~A~d~/fT-.h)lF~.hl 

where ~ is the phase angle associated with the magni- 
tude, I~[. With the assumption that 

I m&,l  >> I m&.hl, (17) 

(16) becomes to good approximation, with neglect of 
I~&.hl = and expansion of the square root to the linear 
term in the cosine, 

I ~ & , l -  I~&,l  = [~3.hl cos (m02.h-- ,,~'3.h). (18) 

Examination of Tables 1 and 2 shows that condition 
(17) can be well satisfied by large numbers of intensity 
data from macromolecules. 

We proceed with the case of one type of pre- 
dominant anomalous scatterer. Thus, from (5) for 
j = 2 ,  

m$3,h = q~',h + 8,.a2, (19) 

where ¢~.h is the phase angle associated with the 
structure factor for the normal part of the scattering 
from the anomalously scattering atoms and 8,,~2 is 
listed in Table 1 for the various m. 
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We now rewrite (18) with the use of (19), 

Im&*l--Im&*l---- I   ,I[cos COS 

+sin (,,,~b2,h- ~o~,h) sin 8m~2]. (20) 

A comparable equation can be written for h, 

I &,d -Im&,d --- I +&,d[cos ( -  + cos  ~mA 2 

- s in  (--m~O:,~ + q~,~) sin 8m~2]. (21) 

The angles ,,~bE,h and -mq~2,~ are now replaced in (20) 
and (21) with the average angle defined by 

0"5(m~/2 ,h- -m~rl2 ,~)  ~- ml/~2, h (22) 

and noting that 

" " ( 2 3 )  -- (~j,h --" (~j,h 

it is possible to solve (20) and (21) as simultaneous 
equations to obtain 

COS (mlff2,h- ~ , h )  "~" Im&,l- [m~2,h[ + Im&,l- [ m~2,d 
([.,~3,d + cos 

(24) 

sin (mqT=,h-- ~ , h )  "" ([m~3,h[ + Im~3,~l) sin 8rnh 2 
(25) 

It is apparent that the values of rag, E,-¢2,~ and of 
I,.~3,d+l,,~3,d can be obtained from (24) and (25) 
since the numerators are composed of measured 
quantities. When there is one type of predominant 
anomalous scatterer, [m;~.d=[m;~3,d and Table 2 
shows that such quantities can be expressed in terms 
of l F~,d and tabulated values of the real and imaginary 
corrections to the normal atomic scattering factors. 
Note also that &,,o+ is known in terms of the latter 
tabulated quantities. 

The results of applying (24) and (25) are used to 
form the sines and cosines of numerous phase 
invariants. This leads to the evaluation of triplet phase 
invariants of the f o r m  m~2,h÷m~2,k÷m~12,(~+k) from 
the measured intensities of scattering. We set 

"~h -- ral/]'2,h -- (~ ~,h (26)  

and similarly for k and h + k. The subscript 2 in ,,,q~,h 
is associated with ,,,~2,h whereas the 2 in q~,h refers 
to the predominant type of anomalously scattering 
atoms. To form the triplet phase invariants, we 
observe that 

COS ( O h ÷  O k ÷  ~'~+~) 

: cos Oh cos Ok cos OG+[ 

-cos  Oh sin Ok sin OK+i 

- sin Oh cos Ok sin Os+~ 

-s in  O~ sin Ok cos O~+~ (27) 

and 

sin (~"~h "q- ~k-t- O~+~) 

= sin Oh COS Ok COS O~+~ 

-s in  Oh sin Ok sin OK+~ 

+ cos Oh sin Ok COS OK+~ 

+COS Oh COS Ok sin O~+~. (28) 

The information required for the right sides of (27) 
and (28) is obtainable from (24) and (25). 

It is seen from (26) that the triplet Oh+Ok+ O~+~ 
of (27) and (28) is actually the difference between 
two triplet phase invariants, one for the entire struc- 
ture and one for the heavy-atom structure, 

--(~0~,h"{- ~/)~,k "q- ~t)~.,(~+~)). (29)  

For the simple structures formed from heavy-atom 
substituents, the triplet phase invariants associated 
with the larger magnitudes of products of normal 
structure factors, [F~,hF~,kF~,(~+r,)l, for the heavy-atom 
structure can be expected to be close to zero to very 
good approximation. Thus, the sum composed of the 
terms ¢~,h+ ~02,k_n + ¢P2,(h+k)n could_ be eliminated from 
(29), leaving ,,g'2,+ mg72,k+ g'2,(K+~). Larger magni- 
tudes for the products of normal structure factors for 
the heavy-atom structure are ensured by basing the 
selection of h, k and h + k on the larger differences, 
IIm&,hl--lm&,hll. It is seen from Table 2 that values 
for the }F~,d can be obtained from the I m~3,d, which 
in turn can be evaluated by use of (24) and (25). 
Given sufficient accuracy, such calculations can be 
used to evaluate [F~,hF~,kF~,(r,+r,>l, obviating the 
necessity to use the largest magnitude differences 
II~&,l-I~&,ll. The distribution of values for the 
cosines of triplet phase invariants for some simple 
structures has been investigated (Karle, 1984d). 

On the basis of the above discussion, it follows that 
by_taking_the ratio_ of (28) to (27) an evaluation of 
mlJ/2,h "3 I" ml//2,k÷ mffJ2,(/~+/~) may be obtained, namely, 

[right side of (28)] 
=tan-~ l f i - ~  side of (27)J" (30) 

The signs of the numerator and the denominator 
uniquely determine the sum of the phases, ~, in (30) 
in the interval -~r < ~"-< ~r. The quantities [,,~3,h[ + 
[,~3,K[ concemed with the heavy-atom structure are 
eliminated in taking the ratio (30). An alternative 
procedure to the one presented by (30) to evaluate 
the triplet phase invariants would be to use (24) and 
(25) to obtain the values for individual phase differen- 
ces and add up appropriate values to obtain values 
for the right side of (29). As before, in those instances 
when the triplet phase invariants for the structure of 
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the anomalously scattering atoms are estimated to be 
close to zero, the desired result is obtained. 

Formulas for  m4q.h -- q~2., 
rl It is possible to obtain formulas for .,0z.h - ~02,h that 

are comparable to (24) and (25). This is accomplished 
by rewriting (I) as 

m ~ 2 , h  = m~-I ,h -- mO~3,h • (31) 

From (31), it follows that 

I~&,l  = = I~&, l  = + [ rn,.~3,hl 2 

-2 lm&, l  [,,~3.d cos (m6,,h-- m~3.h). (32) 

With the assumption that 

I~&, l  >> [m~3.hl, (33) 

(32) becomes to good approximation, with neglect of 
]~3,h[ 2 and expansion of the square root to the linear 
term in the cosine, 

I ~ & , l - ~ l ~ = . d + l m & . d  cos  (m~/l,h--ml//3.h). (34) 

Clearly, (34) is the same as (18) except that ,,,0~.h 
replaces ~'2.h" This means that, to this approximation, 
we can use the same mathematics to make evaluations 
for triplet phase invariants that involve various m0~.h 
as is used for the ~02.h. At this approximation, they 
are interchangeable. 

Combining of  cases, m, having values on cardinal points 

There are several cases, m, for which either cos 8 
or sin 8 is equal to zero. Under such circumstances, 
it is not possible to use both (24) and (25) to obtain 
values for the triplet phase invariants in the manner 
so far described. Cases i, 1 and 2 (Table 1) are 
examples, the first and third being associated with 
sin 8 = 0 and the second with cos & = 0. It is suggested 
that these cases may be usefully combined. In the 
following, cases i and 1 will be so treated. The combi- 
nation of cases 1 and 2 may be treated similarly. 

Case i receives a contribution from (24) and case 
1 from (25). In order to use these equations in the 
previously described manner, it is necessary to 
express [=~3.h[, m = i and 1, in terms of I Fg, d. This 
can be obtained from Table 2 and the particular 
expressions for i and 1, respectively, when one pre- 
dominant type of anomalous scatterer is present, are 

[ i~ l ,h l  --  I ,&,l  ÷ I,&,l - I,&,l cos ( ,~=, -  ~ , )  - 
2 cos ~,~21Fg.nl 

(35) 

and 

sin (10:.h-- ~ . h ) -  
I, ~ , ,d  - I, & ,d  - I ,  & , l  + I, & , l  

4 sin a,,=(f'~=/~,)lVT, I ' 
(36) 

where, by (22), 

i4S2.h = ;02, (37) 

and 

,~2 ,  = 0.5(, q,2.h-, ~02,). (38) 

According to the previous sect_ion, the replacement 
of ig'2.h and ~02.h by i01,h and ~0~.h, respectively, may 
be made in (35)-(38). In order to test the accuracy 
of triplet phase invariants obtained from combining 
(35) and (36), comparisons of calculated values are 
made with known values of 

l(i~ff2, h't-  i lff2,h)(il/f2,k + 11/72,k)(i1/72,(~+~)-'~-i {~2,(~+~)). (39) 

The symbol U is employed to refer to the combination 
of cases, m = i and m = 1. 

Correction for systematic error 

In cases, m =2,  3, 5 and 7, the quantity IFgl is 
required. It may be computed from the measured 
intensities by means of (Karle, 1984a) 

If~l=O'5W~(IF~A+lF~rd), (40) 

where Ap represents any particular wavelength, and 

Nn°n 2 N no n 2 ]1 / 2 
Y~ f.~h + ~ f;h 

w~.h= No -~-27.o - =  [ / 
" "  2 ÷ .o n ÷ , 2 +  ,,2 

E f;h 2 [(fjh fj)  f ;  ]J  

(41) 

It has been found that use of (40) can introduce a 
systematic error into the values obtained for the triplet 
phase invariants. This is especially true for the triplet 
phase invariants symbolized by 333, 555 and 777, 
types in which functions (24) and (25), having the 
same value of m, contribute to the evaluation of the 
invariants. Correction of the systematic error can be 
effected by making use of the General Rule (Karle, 
1984d). The correction is quite simple, involving a 
uniform adjustment of the values of the computed 
triplet phase invariants so that the average of their 
values agrees with those predicted by the General 
Rule. To adjust the averages, it is necessary to treat 
those triplet phase invariants associated with positive 
products of magnitude differences (Karle, 1984d) 
separately from those associated with negative prod- 
ucts. The value to which the average for the estima- 
tions associated with positive products must be 
adjusted differs by 7r from that for the estimations 
associated with the negative products. 

Test calculations 

Test calculations were performed on exact data com- 
puted from the coordinates for cytochrome 
c550.PtC12- from Paracoccus denitrificans (Timkovich 
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Table 3. Calculations based on cytochrome c550.PtC142- 
at 2.5 ]~ resolution illustrating the closeness of  values 

between several angles 

Average differences are shown between the average angles mlffl,h 
and the angles associated with the structure factor in the absence 
of anomalous dispersion, ~pg, and the average angles mC72.h. Average 
differences are also shown between ,.~,h and -mO~,a. The sequence 
of the 2900 contributors to the averages was determined by ordering 
the [[,.~.hl--[.,~:2,h[I with the largest first. Averages denoted by 
the letter a concern the first 100 in the sequence, by b the last 100 
in the sequence and by c all 2900. 

Case, Sequence of ([m~l.h--~°~[) ([m~t.h--m~2.h[) <lm@,.h+~¢'~.~l> 
m II,~.~--,~.~ll (rad) (rad) (rad) 

1 a 0.047 0"026 0.067 
b 0.011 0.020 0"079 
c 0.024 0.022 0.070 

2 a 0.021 0.021 0.000 
b 0"025 0"024 0.000 
c 0.024 0.024 0.000 

3 a 0.044 0.044 0.113 
b 0.021 0.021 0.060 
c 0.024 0.024 0.070 

4 a 0.034 0.018 0.099 
b 0.025 0.017 0.050 
c 0.023 0.015 0.070 

5 a 0.031 0.031 0.096 
b 0.010 0.010 0.067 
c 0.017 0.017 0.075 

6 a 0.049 0.032 0.079 
b 0.008 0.006 0.076 
c 0-024 0.015 0.070 

7 a 0.036 0.036 0.008 
b 0.006 0.006 0.015 
c 0-017 0.017 0.015 

& Dickerson,  1976). The structure factors  were com- 
puted in two w~ays. One calculation in t roduced 
anomalous  effects f rom the Pt a tom alone and  the 
second included anomalous  effects from the Pt, Fe, 
S and C1 atoms. The first calculat ion evidently models  
the case when,  strictly speaking,  there would  be only 
one type of  anomalous  scatterer. Its purpose  is to 
provide a basis of  compar i son  for determining the 
effect on the error of  including all four  types of  
anomalous  scatterers in the da ta  while t reat ing the 
da ta  as if the Pt a toms were the one p redominan t  
type of  anomalous  scatterer. 

The calculat ions presented  in Table 3 involve only 
the da ta  that  contain anomalous  effects f rom Pt, Fe, 
S and C1 atoms.  Co lumn 3 indicates that  there is a 
very small difference between the average angles 
m~ ,h  and ~o~,, the angle associated With the s t ructure  
factor  F~, which is the structure factor that  would  be 
obtained if all a toms scattered non-anomalous ly .  
Column 4 indicates that  there is a very small  differ- 
ence between the average angles ,,tffl,h and ~2,h.  
Co lumn 5 shows that  the differences between ,~01,h 
and -~tPl,K are also ra ther  modest .  The calculat ions 
did not include data  for which [Fxh[ and [Fxa[ < 100, 
thus el iminating the smallest  magnitudes.  This was 
also done in the calculat ions included in Tables 4-6. 

Test calculat ions that  involved use of  (24), (25), 
(35), (36) and,  ult imately,  (30) are i l lustrated in 
Tables 4, 5 and 6. The invariants are composed  of  
average angles as given in (22)  or (39) and no distinc- 
tion is made  between mO2,h and mOl,h. The symbols 

Table 4. Average magnitude of error for a variety of  
triplet phase invariants from isomorphous replacement 
and anomalous dispersion data based on cytochrome 
c550.PtC1]- at 2.5 ]k resolution computed by use of  
(24), (25), (35), (36) and ultimately (30) 

T h e  i n v a r i a n t s  a r e  c o m p o s e d  o f  a v e r a g e  a n g l e s  as  g i v e n  in  (22)  

o r  as  a v e r a g e s  o f  a v e r a g e  a n g l e s  as  a p p e a r  in  (39) .  T h e  s y m b o l s  

of the calculations are composed from the cases m that contribute 
to the calculation. (U represents a combination of m = i and 1). 
The selection was based on the largest IIm~,.hl-lm~2,hll, as 
described in the text. In the case of U, selection was based on 
m = i rather than m = 1. Errors were based on known values for 
the triplet phase invariants composed of the average phases. When 
two wavelengths were required, Cu Ka and Mo Ka were used. 
Otherwise only Cu Ka was used. The values of IFgl employed in 
types 3 and 5 were computed from (40) with use of Mo Ka data. 
For the calculations marked by an asterisk in the last column, the 
data involved Pt, Fe, C1 and S as anomalous scatterers but the 
data were treated as if Pt were the only anomalous scatterer. In 
the remaining calculations, the data inolved Pt as the only 
anomalous scatterer. Further calculations relevant to these results 
appear in Tables 5 and 6. 

A v e r a g e  

N u m b e r  o f  S y m b o l  o f  e r r o r  

Row invariants calculation (rad) 
1 991 UUU O. 12 
2 787 UUU 0.32* 
3 1168 UU3 0.19 
4 1190 UU4 0.10 
5 1193 UU5 0.21 
6 1227 UU6 0.09 
7 1039 U33 0.33 
8 1225 U44 0.10 
9 960 U55 0.31 

10 1078 U66 0.07 
I 1 2260 U46 0.08 
12 929 U46 0.44* 
13 1973 U35 0.31 
14 01258 U35 0.41" 
15 1904 345 0.34 
16 794 345 0.36" 
17 1535 356 0.31 
18 1210 356 0.39* 
19 1469 333 0.46 
20 1107 333 0.54* 
21 2167 444 0.10 
22 1373 555 0.43 
23 1169 555 0.52* 
24 1416 666 0.05 

of  the calculat ions are composed  from the cases m 
that  contr ibute  to the calculations ( U  represents a 
combinat ion  of  m = i and 1). 

The selection of  the reflections for the test calcula- 
tions was based  on the appropr ia te  largest magni tude  
differences IIm~i,hl--lm~2,hll in a manne r  entirely 
analogous  to that  for the applicat ion of  the Genera l  
Rule (Karle,  1984d). The reflections were chosen 
from a list of  the 400 top magni tude  differences for 
each case when there were either two or three different 
values of  m in the symbolic representat ion of  a calcu- 
lation. When  there was only one value of  m in the 
symbol,  the choice of  reflections was based  on the 
800 top magni tude  differences appropr ia te  to the 
calculation. The average error listed is the average of  
the magni tudes  of  the differences between the known 
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Table 5. Calculations in which the ]F~[ have exact 
values instead of values computed from (40) with the 

use of Mo Ka data 

Comparison with Table 4 shows that there is considerable reduc- 
tion of the average magnitude of error. 

Average 
Row in Number of Symbol of error 
Table 4 invariants calculation (rad) 

3 1305 UU3 O. 10 
5 1224 UU5 O. 11 
9 1135 u55 0-1o 

15 2088 345 0.07 
17 1792 356 0.06 
19 1753 333 0.10 
22 1508 555 0.10 

values for the triplet phase invariants formed from 
the ~ and those computed by the methods described 
in this paper. 

In Table 4, the asterisk denotes those calculations 
in which the data contain anomalous  scattering con- 
tr ibutions from the Pt, Fe, S and CI atoms. The ones 
without the asterisk concern calculations in which the 
data contain anomalous  scattering contributions only 
from the Pt atoms. The smallest  errors are incurred 
when the data are based on a single type of anomalous  
scatterer and the calculat ion does not involve the 
evaluat ion of  the IF~, I by use of  (40). The largest errors 
are incurred for calculat ions involving m = 3 or 5, 
which require the use of (40), and for those that used 
data that contain anomalous  scattering contr ibutions 
from the Fe, S and C1 atoms as well as from the Pt 
atom. Table 5 shows the reduction in average magni- 
tude of  error that would accrue if  it were possible to 
obtain the IF~,I more accurately than from use of  (40) 
with Mo Kce radiation. In two tests, use of  Ag Ka 
gave only very modest  improvements ,  I and 5 °. Table 
6 shows some rather significant improvements  in the 
average magni tude  of error from use of the correction 
for systematic error. The average errors listed in the 
final co lumn of Table 6 may be compared with those 
of  the corresponding rows of  Table 4, i.e. 19, 20, 22 
and 23, respectively. It is seen that improvements  
ranging from 0.12 to 0.28 rad are obtained. 

Concluding remarks 

It is apparent  from Table 4 that many  more data 
could have been included in the calculations than 
were actually used and from the existence of  
numerous  addi t ional  types of calculations that the 
evaluat ion of  a very large number  of invariants  is 
potential ly possible. In context, these calculat ions 
bear  close similarit ies to those described in terms of  
a General  Rule (Karle,  1984d) that is based on some 
mathemat ica l  and physical  properties of  i somorphous  
replacement  and anomalous  dispersion data. The 
General  Rule applies when there is one p redominan t  
type of  anomalous  scatterer. The same is also true 
for the algebraic analysis presented here. Com- 
parisons between the results of  the calculations pre- 
sented here and those based on the General  Rule 
show an improvement  of  accuracy with use of the 
algebra. In the paper  concerning the General  Rule, 
test calculat ions were made only on data containing 
contr ibutions from the anomalous  scattering of  Pt, 
Fe, S and C1 atoms. When the General  Rule is appl ied  
to data containing contr ibutions from the anomalous  
scattering of  Pt alone, a decrease in error has been 
observed, but it still remains higher than that obtained 
from the corresponding algebraic equations in this 
paper. 

In the tests presented in Tables 4, 5 and 6, it is 
seen that the average of the magni tudes  of  error range 
from only a very few degrees to about 25 ° (after 
appl icat ion of  the corrections in Table 6). This is the 
error in t roduced by use of.tl~, mathematics.  Addi- 
t ional errors that derive from experimental  uncer- 
tainties will determine the extent to which these calcu- 
lations can be appl icable  to practical procedures for 
phase determinat ion.  This is a matter for much future 
study. 

An exact algebraic analysis  of mult iwavelength 
anomalous  dispersion experiments  has been pub- 
lished (Karle,  1980). In order to obtain informat ion 
concerning individual  phase values in the latter analy- 
sis it would be necessary to know the structure of  at 
least one type of  anomalous ly  scattering atoms. The 
exact algebraic analysis is appl icable  to any number  

Table 6. Application of correction for systematic error in the calculation of lF~] from (40) with the use of Mo K a  
data 

Comparison with Table 4 shows a reduction of the average magnitude of error. 

After 
Symbol Anomalously Number of Average Correction 
of ca l -  scattering invariants error for systematic 

culation atoms (+ product) (rad) error 
333 Pt 423 0"44 0"31 

333 [ S, CI J 402 0-48 0.39 
555 Pt 560 0.42 0"29 

555 [ S, el J 493 0.48 0"45 

After 
Number of Average correction Overall 
invariants ~.rror for systematic Total  corrected 

(- product) (rad) e r ror  invariants error (rad) 
1046 0.47 0.12 1469 0.18 
705 0-58 0"30 1107 0"34 
813 0"43 0"32 1373 0"31 
676 0"55 0"35 1169 0"39 
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and type of anomalously scattering atoms and can 
readily incorporate information from isomorphous 
replacement. If a heavy-atom structure is not known, 
it is still possible to evaluate triplet phase invarants 
(Karle, 1984e) from the exact algebraic analysis. 

The algebraic analysis presented here involves 
somewhat different quantities. In its range of applica- 
bility, individual phase information would also be 
derivable from the present analysis if the heavy-atom 
structure were known since, then, ~P~.h in (24) and 
(25) would be known. The two kinds of algebraic 
analyses are expected to yield closely equivalent 
results in their areas of common applicability. 

In order to apply the results of this paper, which 
concern one predominant type of anomalous scat- 
terer, it is only necessary to know the chemical identity 
of this type of anomalous scatterer. 

I wish to thank Mr Stephen Brenner for writing 
the appropriate programs and making the computa- 
tions reported here. 

This work was suppoi'ted in part by USPHS grant 
GM30902. 
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Abstract 

Hypothetical variances are checked and improved 
and observations are tested for normal and indepen- 
dent distribution by means of g 2 distributions. For 
the conversion of o -2 into 0 .2 and of I into F the 
quantity X ( I ) = s i g n ( I ) [ I I  ~/2 instead of F = p I  ~/2 
(p = Lorentz correction etc.) is considered. With the 
probability density function f ( I )  for I the variance 
of F is 

0.~ p2 I X2( I ) f ( I )  d I -  I X ( I ) f ( I )  dI  . 
- - 0 0  - - 0 0  

This formula is also valid if the observed intensity is 
zero or negative. Unexpectedly, the approximate 
0.'F=p0.x/(2I t/2) are in most cases smaller than the 
correct ones. The simple formula F = p I  1/2 yields F 
that in the mean are too low. The correction formula 
valid for all ratios I /0 . ,  is Fco r r  = p ( 2 I  I / 2 - A ) ,  where 
I is the observed intensity and A the second integral 
in the above formula for 0.2. Since the expressions 
0 .2 and F¢orr are known, there is no other reason to 
discard weak intensities than the fact that this saves 
computing time. Examples are given and the normal 
probability plot is applied. 

0108-7673/85/020189-07501.50 

Introduction 

Hypothetical variances 0.2 of integrated intensities I 
of the rotating-crystal method can be Obtained by 
means of Poisson's formula: 

I = I T -  a ( B L +  B H )  (1) 

o .2 = I T  + o¢2(BL + BH) .  (2) 

I T  is the sum of all X-ray quanta recorded by the 
counter during the rotation of the crystal through the 
reflecting orientation. BL and B H  are the low- and 
high-angle background counts and a is the ratio of 
the times that were spent for the measurements of I T  
and of ( B L +  BH) .  It is not essential that I and 0.2 
are obtained by as simple formulae as (1) and (2); 
the arguments given in the following apply also if 
more sophisticated measuring procedures and for- 
mulae for the determination of I and 0.2 are used 
as, for example, proposed by Shoemaker (1968), 
Blessing, Coppens & Becker (1974) or Lehmann 
(1975). 

The necessity and procedures to correct pure 
Poisson variances have been discussed by many 
authors, e.g. Jeffery (1964), Jeffery & Rose (1964), 
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